八重豆子

● 小萌新
2022-07-21
61
29
45
量子力学之泡利原理
由于从原则上,无法彻底确定一个量子物理系统的状态,因此在量子力学中内在特性(比如质量、电荷等)完全相同的粒子之间的区分,失去了其意义。在经典力学中,每个粒子的位置和动量,全部是完全可知的,它们的轨迹可以被预言。通过一个测量,可以确定每一个粒子。在量子力学中,每个粒子的位置和动量是由波函数表达,因此,当几个粒子的波函数互相重叠时,给每个粒子“挂上一个标签”的做法失去了其意义。
这个全同粒子(identical particles) 的不可区分性,对状态的对称性,以及多粒子系统的统计力学,有深远的影响。比如说,一个由全同粒子组成的多粒子系统的状态,在交换两个粒子“1”和粒子“2”时,我们可以证明,不是对称的,即是反对称的。对称状态的粒子是被称为玻色子,反对称状态的粒子是被称为费米子。此外自旋的对换也形成对称:自旋为半数的粒子(如电子、质子和中子)是反对称的,因此是费米子;自旋为整数的粒子(如光子)是对称的,因此是玻色子。
这个深奥的粒子的自旋、对称和统计学之间关系,只有通过相对论量子场论才能导出,它也影响到了非相对论量子力学中的现象。费米子的反对称性的一个结果是泡利不相容原理,即两个费米子无法占据同一状态。这个原理拥有极大的实用意义。它表示在我们的由原子组成的物质世界里,电子无法同时占据同一状态,因此在最低状态被占据后,下一个电子必须占据次低的状态,直到所有的状态均被满足为止。这个现象决定了物质的物理和化学特性。
费米子与玻色子的状态的热分布也相差很大:玻色子遵循玻色-爱因斯坦统计,而费米子则遵循费米-狄拉克统计。

状态函数
在量子力学中,一个物理体系的状态由状态函数表示,状态函数的任意线性叠加仍然代表体系的一种可能状态。状态随时间的变化遵循一个线性微分方程,该方程预言体系的行为,物理量由满足一定条件的、代表某种运算的算符表示;测量处于某一状态的物理体系的某一物理量的操作,对应于代表该量的算符对其状态函数的作用;测量的可能取值由该算符的本征方程决定,测量的期望值由一个包含该算符的积分方程计算。 (一般而言,量子力学并不对一次观测确定地预言一个单独的结果。 取而代之,它预言一组可能发生的不同结果,并告诉我们每个结果出现的概率。也就是说,如果我们对大量类似的系统作同样地测量,每一个系统以同样的方式起始,我们将会找到测量的结果为A出现一定的次数,为B出现另一不同的次数等等。人们可以预言结果为A或B的出现的次数的近似值,但不能对个别测量的特定结果做出预言。)状态函数的模平方代表作为其变量的物理量出现的概率。根据这些基本原理并附以其他必要的假设,量子力学可以解释原子和亚原子的各种现象。
根据狄拉克符号表示,状态函数,用<Ψ|和|Ψ>表示,状态函数的概率密度用ρ=<Ψ|Ψ>表示,其概率流密度用(?/2mi)(Ψ*▽Ψ-Ψ▽Ψ*)表示,其概率为概率密度的空间积分。
经典物理量的量子化问题就归结为薛定谔波动方程的求解问题。

量子力学之量子纠缠
假设一个零自旋中性π介子衰变成一个电子与一个正电子。这两个衰变产物各自朝着相反方向移动。电子移动到区域A,在那里的观察者会观测电子沿着某特定轴向的自旋;正电子移动到区域B,在那里的观察者“鲍勃”也会观测正电子沿着同样轴向的自旋。在测量之前,这两个纠缠粒子共同形成了零自旋的“纠缠态”,是两个直积态的叠加。https://bbs.easyareamc.cn/attachments/e479acfd-aff5-4739-8330-2ccf8881d216-jpeg.8/

量子力学学科简史
量子力学是描述微观物质的理论,与相对论一起被认为是现代物理学的两大基本支柱,许多物理学理论和科学如原子物理学固体物理学核物理学粒子物理学以及其它相关的学科都是以量子力学为基础所进行的。
量子力学是描写原子和亚原子尺度的物理学理论[1] 。该理论形成于20世纪初期,彻底改变了人们对物质组成成分的认识。微观世界里,粒子不是台球,而是嗡嗡跳跃的概率云,它们不只存在一个位置,也不会从点A通过一条单一路径到达点B[1] 。根据量子理论,粒子的行为常常像,用于描述粒子行为的“波函数”预测一个粒子可能的特性,诸如它的位置和速度,而非确定的特性[1] 。物理学中有些怪异的概念,诸如纠缠和不确定性原理,就源于量子力学[1] 。
19世纪末,经典力学经典电动力学在描述微观系统时的不足越来越明显。量子力学是在20世纪初由马克斯·普朗克尼尔斯·玻尔沃纳·海森堡埃尔温·薛定谔沃尔夫冈·泡利路易·德布罗意马克斯·玻恩恩里科·费米保罗·狄拉克阿尔伯特·爱因斯坦康普顿等一大批物理学家共同创立的。

电子云
量子力学的发展革命性地改变了人们对物质的结构以及其相互作用的认识。量子力学得以解释许多现象和预言新的、无法直接想象出来的现象,这些现象后来也被非常精确的实验证明。除通过广义相对论描写的引力外,至今所有其它物理基本相互作用均可以在量子力学的框架内描写(量子场论)。
量子力学并没有支持自由意志,只是于微观世界物质具有概率波等存在不确定性,不过其依然具有稳定的客观规律,不以人的意志为转移,否认宿命论。第一,这种微观尺度上的随机性和通常意义下的宏观尺度之间仍然有着难以逾越的距离;第二,这种随机性是否不可约简难以证明,事物是由各自独立演化所组合的多样性整体,偶然性必然性存在辩证关系。自然界是否真有随机性还是一个悬而未决的问题,对这个鸿沟起决定作用的就是普朗克常数,统计学中的许多随机事件的例子,严格说来实为决定性的。
在量子力学中,一个物理体系的状态由波函数表示,波函数的任意线性叠加仍然代表体系的一种可能状态。对应于代表该量的算符对其波函数的作用;波函数的模平方代表作为其变量的物理量出现的概率密度
量子力学是在旧量子论的基础上发展起来的。旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。
1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出普朗克公式,正确地给出了黑体辐射能量分布。

量子力学之两大学派​

哥本哈根学派​

长期以来,由玻尔领衔的哥本哈根学派被中国学界视为20世纪第一物理学派。但根据厚宇德的研究,这些现有证据都缺乏史料支撑。费恩曼质疑过玻尔的贡献,也有其他物理学家认为玻尔在建立量子力学方面的作用被高估了。本质上说,哥本哈根学派是一个哲学学派。

哥廷根物理学派​

哥廷根物理学派,是建立量子力学的物理学派。是高斯奠定的哥廷根数学学派学术传统适逢物理学具有特殊发展需求阶段的必然产物。玻弗兰克是这个学派的核心人物。